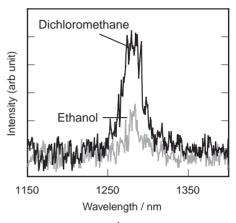
Singlet Oxygen Generation Photocatalyzed by TiO₂ Particles and Its Contribution to Biomolecule Damage

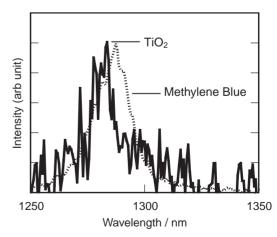
Kazutaka Hirakawa*1 and Toru Hirano2

¹Department of Basic Engineering (Chemistry), Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561 ²Photon Medical Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192


(Received April 18, 2006; CL-060463; E-mail: tkhirak@ipc.shizuoka.ac.jp)

The study of near-infrared emission has shown that singlet oxygen ($^{1}O_{2}$) is generated via superoxide by the photocatalytic reaction of titanium dioxide (TiO_{2}) dispersed in solvents. The $^{1}O_{2}$ was deactivated on the TiO_{2} surface and could not oxidize nicotinamide adenine dinucleotide, which has no affinity to the TiO_{2} surface. The generation of photocatalytic $^{1}O_{2}$ was enhanced in the phospholipid membrane, and a water soluble protein acted as an effective scavenger of the generated $^{1}O_{2}$. These findings suggest that $^{1}O_{2}$ generated by TiO_{2} contributes to the phototoxic effect through the oxidation of the membrane protein.

Titanium dioxide (TiO₂) is a well-known semiconducting photocatalyst.1 When exposed to ultraviolet A light (320-400 nm), the reduction-oxidation activity of TiO₂ has a significant biological impact, as is exemplified by its bactericidal activity. Moreover, the phototoxic effect of TiO₂ has been studied for medical application, 1,2 such as photodynamic therapy (PDT).3 Reactive oxygen species, including hydroxyl radicals, superoxide (O₂⁻), and hydrogen peroxide (H₂O₂), play an important role in the phototoxic effect.^{1,4} The contribution of singlet oxygen (1O₂) to the TiO₂ photocatalytic reaction has also been reported.^{5,6} Recently, the ¹O₂ generation by TiO₂ photocatalysis has been demonstrated by the emission measurement of ¹O₂, which is assigned to the transition from ${}^{1}O_{2}({}^{1}\Delta_{g})$ to ${}^{3}O_{2}({}^{3}\Sigma_{g})$. Because ¹O₂ is considered to be an important reactive species in the PDT process, the clarification of the contribution of ¹O₂ generated by TiO₂ photocatalysis is closely related to a design of photocatalysts for medical applications. In the present study, the generation of ¹O₂ in the TiO₂ photocatalysis and the importance on the biomolecular damage were examined.


 TiO_2 particles (anatase and rutile; particle size: 100–300 nm, Kanto Kagaku Co.) were dispersed in solvents (D₂O, ethanol, and dichloromethane). TiO_2 particles dispersed with liposome were prepared using a commercially available liposome kit (Sigma Chemical Co.) using an ultrasonication method.⁸ The near-infrared emission spectrum was measured during irradiation (355 nm) according to a previous report.⁹

The typical emission of ${}^{\bar{1}}O_2$ at ca. 1270 nm was observed during irradiation of TiO₂ (Figure 1). A relatively strong emission of ${}^{\bar{1}}O_2$ was observed in nonpolar organic solvents. The quantum yield (Φ_Δ) of the ${}^{\bar{1}}O_2$ generation by TiO₂ photocatalysis was roughly estimated from the comparison of the ${}^{\bar{1}}O_2$ emission intensities by TiO₂ and Methylene Blue $(\Phi_\Delta=0.52)^{10}$ and the apparent absorbance of the TiO₂ dispersions. In It has been reported that the lifetime of ${}^{\bar{1}}O_2$ generated by TiO₂ photocatalysis $(5\,\mu\text{s})^6$ is shorter than that by the photosensitized reaction of Methylene Blue $(12\,\mu\text{s})$. Because the emission intensity is proportional to the lifetime, the Φ_Δ was corrected by its lifetime. The estimated value of Φ_Δ by both types of TiO₂, anatase and

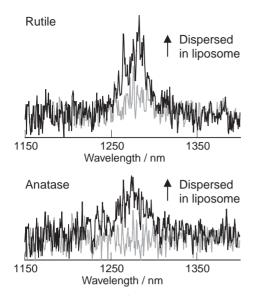


Figure 1. Emission spectra of ${}^{1}O_{2}$ generated by the TiO₂ photocatalytic reaction. Dispersed TiO₂ particles (140 μ g mL⁻¹, anatase) in organic solvents were irradiated (ex: 355 nm).

rutile, was about 0.02 in ethanol. This value of Φ_{Δ} is sufficiently large to induce oxidative damage to biomolecules. The 1O_2 emission in D_2O was completely quenched by the addition of superoxide dismutase, which is the enzyme to dismutate O_2^- into H_2O_2 . These findings suggest that 1O_2 is produced via oxidation of O_2^- , which is generated from the photocatalytic reduction of molecular oxygen by TiO_2 . The 1O_2 emission by rutile was markedly larger than that of anatase in D_2O (data not shown). This difference can be reasonably explained by the fact that, in

Figure 2. Emission spectra of 1O_2 generated by the TiO₂ photocatalytic reaction and the photosensitized reaction of Methylene Blue. A dispersed TiO₂ particle (140 μ g mL⁻¹, anatase) or Methylene Blue (absorbance: 0.05 at 355 nm) in ethanol was irradiated (ex: 355 nm).

Figure 3. Emission spectra of ${}^{1}O_{2}$ generated by the TiO₂ photocatalytic reaction with or without liposome. Dispersed TiO₂ particles (140 µg mL⁻¹) in D₂O were irradiated (ex: 355 nm).

aqueous solution, H_2O_2 generation, rather than O_2^- generation, proceeds in the photocatalysis of anatase, whereas O_2^- is the main product from oxygen photoreduction mediated by rutile. 13 These results support the mechanism of 1O_2 generation via O_2^- by TiO_2 photocatalysis.

The emission spectrum of 1O_2 by TiO_2 (in the cases of anatase and rutile) shifted to blue (about 4 nm) slightly more than in the case of Methylene Blue (Figure 2), suggesting that the surroundings of the 1O_2 by TiO_2 are different from those of Methylene Blue. The 1O_2 generated by the photosensitized reaction of Methylene Blue becomes deactivated in the homogeneous media of solvent molecules. Consequently, a possible explanation of the blue shift of the 1O_2 emission by TiO_2 is that most of the 1O_2 becomes deactivated on the TiO_2 surface.

The ${}^{1}O_{2}$ emission was significantly increased in liposome in the cases of anatase and rutile (Figure 3). A possible reason for the enhancement of the ${}^{1}O_{2}$ emission is the elongation of the lifetime of ${}^{1}O_{2}$ or the promotion of the photocatalytic reaction. This result has shown that the phospholipid membrane is an important environment for the phototoxic reaction mediated by ${}^{1}O_{2}$ generation in the TiO₂ photocatalysis. It has been reported that TiO₂ particles show affinity with a cell membrane. Therefore, a cell membrane should be an important environment of the TiO₂ photocatalytic reaction. Since the amino acid residues in proteins can be oxidized by ${}^{1}O_{2}$, 10 a membrane protein should be the target biomolecule in a cell membrane. Indeed, ${}^{1}O_{2}$ emission was quenched by the addition of bovine serum albumin, a water-soluble protein (data not shown), suggesting the scavenging of ${}^{1}O_{2}$ through the oxidation of a protein.

In vivo, nicotinamide adenine dinucleotide (NADH) is one of the most important target biomolecules oxidized by $^{1}O_{2}$. 14 NADH is easily oxidized into the oxidized form, and the typical absorption peak at ca. 340 nm is diminished. In the present study, dispersed anatase and rutile particles did not oxidize NADH in $H_{2}O$ and $D_{2}O$ during irradiation (data not shown). Because NADH is rarely adsorbed on a TiO_{2} surface, $^{1}O_{2}$ could not

effectively oxidize NADH in solution. In a previous study, we reported that DNA is damaged mainly through H_2O_2 and hydroxyl radicals in the photocatalytic reaction of TiO_2 and that the contribution of 1O_2 is negligible.⁴ These findings and those of previous reports have shown that the 1O_2 generated by the TiO_2 photocatalytic reaction does not play an important role in the mechanism of damage to these biomolecules, which do not interact with the TiO_2 surface.

In summary, 1O_2 can be generated via the oxidation of O_2^- , which is produced through the photocatalytic reduction of molecular oxygen, on the surface of a TiO_2 photocatalyst during photoirradiation. The 1O_2 on the TiO_2 surface scarcely oxidized NADH, because most of the 1O_2 deactivated on the TiO_2 surface. On the other hand, the 1O_2 generation by TiO_2 photocatalysis could be enhanced in the microenvironment of the phospholipid membrane. These findings suggest that 1O_2 contributes to the phototoxicity of TiO_2 through oxidation of the membrane protein.

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (417) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese Government.

References and Notes

- A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol., C 2000, 1, 1.
- R. Cai, K. Hashimoto, K. Ito, Y. Kubota, A. Fujishima, *Bull. Chem. Soc. Jpn.* 1991, 64, 1268.
- 3 D. E. Dolmans, D. Fukumura, R. K. Jain, *Nat. Rev. Cancer* 2003, 3, 380.
- 4 K. Hirakawa, M. Mori, M. Yoshida, S. Oikawa, S. Kawanishi, *Free Radical Res.* **2004**, *38*, 439.
- 5 R. Konaka, E. Kasahara, W. C. Dunlap, Y. Yamamoto, K. C. Chien, M. Inoue, Free Radical Biol. Med. 1999, 27, 294.
- 6 Y. Nosaka, T. Daimon, A. Y. Nosaka, Y. Murakami, *Phys. Chem. Chem. Phys.* **2004**, *6*, 2917.
- 7 K. Lung, J. Mosinger, D. M. Wagnerová, *Coord. Chem. Rev.* 2004, 248, 321.
- S.-L. Huang, A. J. Hamilton, A. Nagaraj, S. D. Tiukinhoy, M. E. Klegerman, D. D. Mcpherson, R. C. Macdonald, *J. Pharm. Sci.* 2001, 90, 1917.
- K. Hirakawa, S. Kawanishi, T. Hirano, *Chem. Res. Toxicol.* 2005, 18, 1545.
- M. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233–234, 351.
- 11 The precise estimation of the Φ_{Δ} is difficult because scattering by the suspended TiO₂ powder makes the calculation of absorbed light intensity difficult. In the present study, the Φ_{Δ} was estimated using the apparent absorbance of TiO₂. The calculated value indicates the lowest limit of the Φ_{Δ} by the TiO₂ photocatalysis in ethanol.
- 12 P. B. Merkel, D. R. Kearns, J. Am. Chem. Soc. 1972, 94, 7244.
- 13 H. Goto, Y. Handa, T. Ohno, M. Matsumura, J. Catal. 2004, 225, 223.
- 14 a) F. Petrat, S. Pindiur, M. Kirsch, H. de Groot, *J. Biol. Chem.* **2003**, 278, 3298. b) F. Petrat, S. Pindiur, M. Kirsch, H. de Groot, *Arch. Biochem. Biophys.* **2003**, 412, 207.